If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-25-24=0
We add all the numbers together, and all the variables
5x^2-49=0
a = 5; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·5·(-49)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*5}=\frac{0-14\sqrt{5}}{10} =-\frac{14\sqrt{5}}{10} =-\frac{7\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*5}=\frac{0+14\sqrt{5}}{10} =\frac{14\sqrt{5}}{10} =\frac{7\sqrt{5}}{5} $
| 32-13=1/4(52-12w) | | 32-13=1/4(52-12w) | | 99x10^x=71 | | 3.6m=14.4= | | 3.6m=14.4= | | 80+y=120 | | 2x+11=4x−7 | | 2x+11=4x−7 | | -4=-7/9x | | 568=k18 | | 4.41/c=0/36 | | 0.3y+5=1 | | 0.75x-3=-6 | | 81=(7x+18) | | 6(6d+8)/3=−3d+10 | | 6(6d+8)/3=−3d+10 | | 6(6d+8)/3=−3d+10 | | 4.41/c=63 | | 51=(8x+9) | | 51=(8x+9) | | 51=(8x+9) | | 51=(8x+9) | | 51=(8x+9) | | 51=(8x+9) | | 51=(8x+9) | | -81=-7(v+7)+3v | | 3y-1=7y-3 | | 3y-1=7y-3 | | 4.41/c=63 | | 3y-1=7y-3 | | -81=-7(v+7)+3v | | 3y-1=7y-3 |